
CPA Security Continued
CS/ECE 407

2

Attendance:

Today’s objectives

Examine CPA Security

Understand the limitations of deterministic
encryption, see how to circumvent this problem

Construct CPA-secure schemes

3

4

Alice Bob

Eve

ct

eavesdrop(m0, m1):
 k <-$
 ct <- Enc(k, m0)
 return ct

{0,1}λ c≈
eavesdrop(m0, m1):
 k <-$
 ct <- Enc(k, m1)
 return ct

{0,1}λ

A cipher (Enc, Dec) has

one-time semantic security if:

5

Alice Bob

Eve

ct0, ct1

eavesdrop(m0, m1):
 k <-$
 ct <- Enc(k, m0)
 return ct

{0,1}λ c≈
eavesdrop(m0, m1):
 k <-$
 ct <- Enc(k, m1)
 return ct

{0,1}λ

A cipher (Enc, Dec) has

one-time semantic security if:

6

“Good” encryption Naive use of one-time
semantically-secure

encryption

7

A cipher (Enc, Dec) has one-time semantic security if:
eavesdrop(m0, m1):
 k <-$
 ct <- Enc(k, m0)
 return ct

{0,1}λ c≈
eavesdrop(m0, m1):
 k <-$
 ct <- Enc(k, m1)
 return ct

{0,1}λ

8

A cipher (Enc, Dec) has one-time semantic security if:
eavesdrop(m0, m1):
 k <-$
 ct <- Enc(k, m0)
 return ct

{0,1}λ c≈
eavesdrop(m0, m1):
 k <-$
 ct <- Enc(k, m1)
 return ct

{0,1}λ

A cipher (Enc, Dec) has security against a chosen
plaintext attack (CPA) if:

k <-$
eavesdrop(m0, m1):
 ct <- Enc(k, m0)
 return ct

{0,1}λ

c≈
k <-$
eavesdrop(m0, m1):
 ct <- Enc(k, m1)
 return ct

{0,1}λ

9

Deterministic encryption does not work —
what now?
Statefulness:
Cipher keeps internal state to ensure encryptions are different

Randomized:
Cipher samples randomness for each encryption

Nonce-based:
Alice and Bob pass extra “use-once” values to the Enc/Dec
function (basically, Alice and Bob maintain a state on behalf of
the cipher)

10

F : {0,1}λ × {0,1}n → {0,1}m

 is called a pseudorandom function family if
the following indistinguishability holds:

F

k <-$

apply(x):
 return F(k, x)

{0,1}λ

c≈

D <- empty-dictionary

apply(x):
 if x is not in D:
 D[x] <-$
 return D[x]

{0,1}m

11

Deterministic encryption does not work —
what now?
Statefulness:
Cipher keeps internal state to ensure encryptions are different

Randomized:
Cipher samples randomness for each encryption

Nonce-based:
Alice and Bob pass extra “use-once” values to the Enc/Dec
function (basically, Alice and Bob maintain a state on behalf of
the cipher)

12

Enc(k, m):
 global counter <- 0
 c0 <- F(k, counter) m
 c <- (c0, counter)
 counter <- counter + 1
 return c

Dec(k, (c0, counter)):
 return F(k, counter) c0

⊕

⊕

Stateful CPA-Secure Encryption

13

Enc(k, m):
 r <-$
 c0 <- F(k, r) m
 c <- (c0, r)
 return c

Dec(k, (c0, r)):
 return F(k, r) c0

{0,1}λ

⊕

⊕

Randomized CPA-Secure Encryption

Main idea: it is provably
unlikely that Enc will

sample the same r more
than once

Proof of security is more
nuanced here

Related to the birthday
paradox

14

Enc(k, nonce, m):
 c0 <- F(k, nonce) m
 c <- (c0, nonce)
 return c

Dec(k, (c0, nonce)):
 return F(k, r) c0

⊕

⊕

Nonce-based CPA-Secure Encryption

Requires changing
slightly the definition of

CPA security:

Adversary is not allowed
to call encrypt with same

nonce more than once

15

k <-$
eavesdrop(m0, m1):
 ct <- Enc(k, m0)
 return ct

{0,1}λ

c≈
k <-$
eavesdrop(m0, m1):
 ct <- Enc(k, m1)
 return ct

{0,1}λ

A cipher (Enc, Dec) has security against a chosen
plaintext attack (CPA) if:

16

A nonce-based cipher (Enc, Dec) has security against a
chosen plaintext attack (CPA) if:

k <-$
S <- empty-set
eavesdrop(nonce, m0, m1):
 if nonce in S:
 return error
 insert nonce to S
 ct <- Enc(k, nonce, m0)
 return ct

{0,1}λ

c≈

k <-$
S <- empty-set
eavesdrop(nonce, m0, m1):
 if nonce in S:
 return error
 insert nonce to S
 ct <- Enc(k, nonce, m1)
 return ct

{0,1}λ

Today’s objectives

Examine CPA Security

Understand the limitations of deterministic
encryption, see how to circumvent this problem

Construct CPA-secure schemes

17

